nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2008, 01, No.98 7-11
蚁群算法中参数设置的研究
基金项目(Foundation): 国家自然科学基金资助项目(50465001);; 山东省中青年科学家奖励基金(2006BS05008)
邮箱(Email):
DOI:
摘要:

蚁群算法是一种新的随机优化算法,它利用人工蚂蚁在其途经路上释放信息素寻优,体现了正反馈、分布式、多anent协同性和并行性等特点,蚁群算法中的各参数对计算结果有很大影响.介绍了蚁群算法原理和模型(以TSP问题为例),对基本蚁群算法参数的合理选取进行了实验分析,给出了算法参数选取的基本原则,有利于蚁群算法在优化问题中的应用.

Abstract:

Ant Colony Algorithm is a new stochastic optimization algorithm using artificial ants releasing pheromone on the path,characterized with a positive feedback,distributed computation,multi-agent synergy and parallel algorithm.The parameters have an important role in the result of ant colony algorithm.The principle and model of Ant Colony Algorithm were introduced and reasonable experiments were carried out on the parameters of this algorithm,including basic principles for the parameter selection,which are beneficial to the application and development of the ant colony algorithm in optimization problems.

参考文献

[1]刘乃文,王奎峰.蚁群优化算法及其应用[J].山东师范大学学报,2006,21(2):30-31.

[2]Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimi-zation by ant colonies[C]//Dorigo M.Proceedings of the 1stEuropean Conference on Artificial Life.Paris:Elsevier Pub-lishing,1991:134-42.

[3]Dorigo M,Maniezzo V,Colorni A.Ant system:optimiza-tion by a colony of cooperating agents[J].IEEE Transactionon Systems,Man,and Cybernetics-Part B,1996,26(1):29(1).

[4]Dorigo M,Gambardella L M.Ant colonies for the travelingsalesman problem[J].BioSystems.1997,43(2):73-81.

[5]Chang H S.An ant system based exploration-exploitation forreinforcement learning[C]//Hyeong So0 Chang.Proceed-ings of the 2004 IEEE International Conference on Systems,Man and Cybernetics.Seoul,Korea,2004,4:3 805-3 810.

[6]段海滨,王道波.一种快速全局优化的改进蚁群算法及仿真[J].信息与控制,2004,33(2):241-244.

[7]段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005.

[8]王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33.

[9]覃刚力,杨家本.自适应调整信息素的蚁群算法[J].信息与控制,2002,31(3):198-201.

基本信息:

DOI:

中图分类号:TP18;TP301.6

引用信息:

[1]徐红梅,陈义保,刘加光等.蚁群算法中参数设置的研究[J].山东理工大学学报(自然科学版),2008,No.98(01):7-11.

基金信息:

国家自然科学基金资助项目(50465001);; 山东省中青年科学家奖励基金(2006BS05008)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文