63 | 0 | 30 |
下载次数 | 被引频次 | 阅读次数 |
准确、快速地实现建筑物特征提取对智慧城市建设具有重要意义,而面特征和线特征是建筑物最主要的几何信息,可以准确反映建筑物的结构特征。本文分别采用欧式聚类法、随机抽样一致性算法和区域生长法检测面特征,分析最优检测结果;从边缘检测的角度分别基于法线和近似曲率检测线特征,并对比分析线特征提取的效果。实验结果表明,基于区域生长的面特征检测效果较其他方法在细部检测方面效果更好,基于近似曲率的线特征检测更连续、平滑。建筑物特征的精确高效检测对于后续的建筑物模型重建具有一定应用价值。
Abstract:Accurate and fast building feature extraction is of great significance for construction of smart cities. Polygonal features and linear features are the most fundamental geometric information, which can accurately reveal building structural characteristics. This study first conducted comparative analysis of surface feature detection using three distinct approaches: Euclidean clustering, random sampling consistency algorithm and regional growth method, followed by quantitative performance comparison. For edge characterization, the linear features were detected by normal vector and approximate curvature estimation, respectively, and the effects of them were compared and analyzed. Experiments show that the regional growth method demonstrated superior precision of surface feature extraction compared to other methods, whereas the approximate curvature estimation enhanced continuity of smoothness of linear characteristics. The methods adopted in this study for accurate and efficient detection of building features has considerable application value for subsequent reconstruction of building models.
[1]苏中花.多场景下点云数据建筑物分割方法研究[D].成都:电子科技大学,2023.
[2]叶长斌,景国峰,罗翠翠,等.基于点云特征的建筑物屋顶面提取[J].地理空间信息,2023,21(3):86-89.
[3]潘斌,蔡志刚,刘微微,等.机载激光雷达点云的城市建筑物直线特征提取方法[J].测绘工程,2022,31(5):16-23.
[4]闻平,赵飞,吴小东,等.利用原始激光雷达点云数据提取渐进式建筑物轮廓线[J].测绘通报,2020(9):80-84.
[5]毛洪孝,毛梅娟,徐晓新.基于车载激光点云数据的城市道路面提取方法研究[J].测绘与空间地理信息,2024,47(2):163-166.
[6]蒋梅笑,章光,徐卫青,等.基于三维激光扫描点云的边界特征自动提取算法[J].武汉理工大学学报,2017,39(6):68-72.
[7]周春霖,朱合华,李晓军.随机抽样一致性平面拟合及其应用研究[J].计算机工程与应用,2011,47(7):177-179,182.
[8]JIANG X Y,BUNKE H.Fast segmentation of range images into planar regions by scan line grouping[J].Machine Vision and Applications,1994,7(2):115-122.
[9]SITHOLE G,VOSSELMAN G.Automatic structure detection in a point-cloud of an urban landscape[C]//2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas.Berlin:IEEE,2003:67-71.
[10]王瑶,万毅.一种利用近似平均曲率提取散乱点云模型特征点的快速算法[J].甘肃科技,2010,26(14):13-15,31.
[11]聂建辉,刘烨,高浩,等.基于符号曲面变化度与特征分区的点云特征线提取算法[J].计算机辅助设计与图形学学报,2015,27(12):2332-2339.
基本信息:
DOI:10.13367/j.cnki.sdgc.2025.05.011
中图分类号:TU198;P225.2
引用信息:
[1]陈修春,徐工.基于三维激光扫描仪的建筑物特征检测[J].山东理工大学学报(自然科学版),2025,39(05):1-6.DOI:10.13367/j.cnki.sdgc.2025.05.011.
基金信息:
山东省省级大学生创新创业训练计划(S202310433129)